Journal of Organometallic Chemistry, 368 (1989) C25–C28 Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands JOM 9919PC

Preliminary communication

Five-coordinate potassium dihydridosilicates: synthesis and some aspects of their reactivity

B. Becker, R.J.P. Corriu *, C. Guérin, B. Henner, Q. Wang

Laboratoire "Hétérochimie et Amino-Acides", UA. CNRS 1097, Institut de Chimie Fine, Université des Sciences et Techniques du Languedoc, F. 34060-Montpellier-Cédex 1 (France) (Received February 15th, 1989)

Abstract

Five-coordinate potassium dihydridosilicates, $K^+[H_2Si(OR)_3]^-$ (R = Et, i-Pr) have been obtained by reaction of a trialkoxysilane with potassium hydride. Reaction of the dihydridosilicate with an excess of a Grignard reagent gives the corresponding diorganosilane. The ease of reduction of carbonyl compounds by the dihydridosilicate in the absence of a catalyst is indicative of the high reactivity of the Si-H bond in such species.

There is much interest in the existence [1,2], structures [3], reactivity [4], and isomerisations [2,5] of pentacoordinate silicon derivatives that have been proposed as intermediates in reactions of organosilanes in solution [5].

As a part of our investigation of the reactions of such hypervalent organosilicon species [6] we became interested in pentacoordinated silicon hydrides. These species have been observed in the gas phase from the reaction of H⁻ with alkylsilanes [7], and suggested as intermediates in reactions in solution. For instance, the fast racemisation of the optically active 1-NpPhMeSiH(D) (1-Np = 1-naphthyl) catalysed by hydrides (KH, LiAlH₄, LiAlD₄) in THF or DME as solvent at room temperature has been rationalized in terms of coordination of H⁻ (or D⁻) to silicon, leading to a five-coordinate dihydridosilyl anion [8]. Likewise the redistribution reaction of di- and tri-hydrogenosilanes, RR'SiH₂ and RSiH₃ in the presence of hydrides (LiAlH₄, KH and NaH) as catalysts [9] has been shown to involve such intermediates. However, whereas fluoride or alkoxide anions are well known to coordinate readily to a silicon atom to give stable derivatives [1,4], hydridosilicates resulting from the addition of H⁻ at silicon have never been observed in solution.

We have found that potassium hydride reacts with trialkoxy- or triaryloxy-silanes to yield the pentavalent ions, $H_2Si(OR)_3^-$ or $HSi(OR)_4^-$ depending on the reaction conditions, as summarized in Table 1.

It can be seen that the ease of formation and the stability of the dihydridosilicate

HSi(OR);	$DR_{3} + KH \xrightarrow{\text{THF, r.t.}}_{\text{or DME}} HSi(OR)_{4}^{-} K^{+} + H_{2}Si(OR)_{3}^{-} K^{+}$ (1) (2)				
Run	HSi(OR) ₃	reaction	Products (%)	b	
	(solvent)	time (h)	1 <i>a</i>	2 ^{<i>a</i>}	
1	HSi(OEt) ₃ (THF)	6	60	40	
2	HSi(OEt) ₃ (THF)	24	100 (80)	-	
3	HSi(OEt) ₃ (DME)	1.5	100 (75)		
4	HSi(O-i-Pr) ₃ (THF)	6	-	100(94)	
5	HSi(O-i-Pr) ₃ (THF)	168	< 5	> 95	
6	HSi(OPh) ₃ (THF)	2	100 (84)	***	

Table 1

^a Relative ratio of 1 and 2 determined by ²⁹Si NMR. ^b Chemical yields of 1 or 2 obtained after removal of the solvent.

2 depends greatly on the nature of the OR group attached at silicon and on that of the solvent (Table 1). Thus:

(i) $HSi(OPh)_3$ in THF readily gave $HSi(OPh)_4^- K^+$ (Table 1, run 6). Under the same conditions, the reaction of HSi(OEt)₃ with KH in THF (Table 1, run 1) afforded a 60/40 mixture of $HSi(OEt)_4^- K^+$ (1) [10], and $H_2Si(OEt)_3^- K^+$ (2). $HSi(OEt)_{4}$ was exclusively obtained when the reaction was carried on for 24 h (Table 1, run 2). In sharp contrast, $HSi(O-i-Pr)_3$ gave only $H_2Si(O-i-Pr)_3 = K^+$ in 94% yield (Table 1, run 4), and even after 7 days at room temperature less than 5% of $HSi(O-i-Pr)_{4}$ K⁺ was detected. These results suggest the occurrence of a fast redistribution reaction of the dihydridosilicate 2 (R = Ph or Et), the rate of which is strongly lowered by steric effects (R = i-Pr).

(ii) An increase in the solvating power of the solvent, on going to DME from THF, led to formation of $HSi(OR)_4^- K^+$ (R = Et, Table 1, run 3).

The dihydridosilicates 2 (R = Et and i-Pr) gave satisfactory NMR data. In particular, the ²⁹Si NMR chemical shifts were in the usual range for anionic pentacoordinated silicates [4e-f.9,10]; as expected, upfield shifts of the ²⁹Si NMR resonances relative to those of the corresponding alkoxysilanes were observed (Table 2). The ${}^{1}H{}^{-29}Si$ coupling constants are also consistent with a five-coordinate structure [4e,10,11]. The value of the ${}^{1}H^{-29}Si$ coupling constant is smaller for the five-coordinated silicates than for the corresponding neutral species (Table 2), as expected from the decrease in the proportion of s character in the Si-H bond.

Table 2 ²⁹Si NMR data ^{*a*} for **2** (R = Et, i-Pr) (S = THF): a comparison with those of HSi(OR)₃ and HSi(OR)₄

$\delta - 58.8 \text{ ppm (d, } J^1 \text{H} - {}^{29} \text{Si} \text{) } 285 \text{ Hz}$
$\delta = 88.1 \text{ ppm} [10] (d, J(^{1}\text{H} - ^{29}\text{Si}) 223 \text{ Hz}$
$\delta = 80.6$ ppm (t, $J(^{1}\text{H} - ^{29}\text{Si})$ 218 Hz
$\delta = 62.7 \text{ ppm}$ (d, $J(^{1}\text{H} - ^{29}\text{Si})$ 285 Hz
$\delta = 90.7 \text{ ppm} [10] (d, J(^{1}\text{H} - ^{29}\text{Si}) 214 \text{ Hz})$
$\delta = 86.9 \text{ ppm} (t, J(^{1}\text{H}-^{29}\text{Si}) 210 \text{ Hz})$

^a The spectra were recorded in THF as solvent with external C_6D_6 as lock and TMS as reference.

C26

$H_2Si(OR)_3^- K^+$	R'MgX	T(° C)	t (h)	Products (%) ^a	
				$\overline{\mathbf{R}_{2}^{\prime}\mathbf{SiH}_{2}}$	R' ₃ SiH
$H_2Si(OEt)_3 K^+$	PhCH ₂ MgCl	$-30 \rightarrow 0$	2	80	
	n-BuMgBr	$-30 \rightarrow 0$	2	60	10
	PhMgBr	$-30 \rightarrow 0$	0.5	60	20
$H_2Si(OiPr)_3 K^+$	PhMgBr	r.t.	3	77	10
	PhCH ₂ MgCl	40	2	63	20
	n-BuMgBr	r.t.	2	50	15

Table 3				
HSi(OR)3	$\frac{R = Et, 2h}{R = i-Pr, 6h}$	$H_2Si(OR)_3^-$	$K^{+} \xrightarrow{R'MgX}_{THF}$	$+ R'_2SiH_2 + R'_3SiH$

^{*a*} Yields of isolated products.

Table 4

As observed previously for o-arenediolato- [4a] and fluoroorgano-silicates [4d], 2 (R = Et and i-Pr) reacts readily with a slight excess of a Grignard reagent RMgBr and R₂SiH₂ was obtained in good yield (Table 3). Formation in high yields of the dihydrogenosilanes provides good chemical evidence for the nature of the dihydridosilicates 2, and for the presence of a high proportion of H₂Si(OEt)₃⁻ K⁺ in solution (see Table 3). The reaction took place readily under mild conditions in the case of H₂Si(OEt)₃⁻ K⁺ but a higher temperature was required to produce R₂SiH₂ from H₂Si(O-i-Pr)₃⁻ K⁺.

The isolated $H_2Si(O-i-Pr)_3^-$ was also found to reduce carbonyl derivatives in the absence of a catalyst under mild conditions (Table 4).

The yields of primary and secondary alcohols are generally high (50-80% yield). The lower yield in the case of PhCOCH₃ can be attributed to a partial enolisation of the ketone by alkoxide ions liberated during the reaction. Complex **2** is also able to give up both of the hydrogens bonded to silicon (Table 4, run 1–4); this suggests that the reaction goes through a pentavalent hydridosilicate intermediate such as [HSi(OR)₃(OR')]⁻, which can reduce a second molecule of the carbonyl derivative

$\begin{array}{c} H_{2}Si(O-i-Pr)_{3}^{-} K^{+} + R^{1}COR^{2} \xrightarrow{THF} & HCl(2N) \\ (2) & (3) & r.t., 4h & HCl(2N) \\ & HCl(2N) \\ & & HCl(2N) \\ & & HCl(2N) \\ & & HCl(2N) \\ & HCl(2N) \\ & & $				
Run	3	3/2 ratio	$R^{1}CH(OH)R^{2 a}$ (recovered $R^{1}COR^{2}$) (%)	
1	PhCHO	2	74	
2	PhCOPh	2	50 (26)	
3	CH ₃ (CH ₂) ₆ CHO	2	62	
4	PhCOCH ₃	2	36 (40)	
5	PhCOCH ₃	1	80 (14)	

^a Yields of the isolated alcohols are based on the amount of carbonyl compound R^1COR^2 introduced. As the ratio $R^1COR^2/H_2Si(O-i-Pr)_3^- K^+$ is 2 (run 1-4), and the yield is greater than 50% (except with PhCOCH₃ because of partial enolisation), the data show that $H_2Si(O-i-Pr)_3^-$ transfers both of the hydrogens bonded to silicon.

$$[10] (eq. 1).$$

$$H_{2}Si(O-i-Pr)_{3}^{-} + R^{1}COR^{2} \xrightarrow{\text{THF}} [HSi(O-i-Pr)_{3}(OCHR^{1}R^{2})]^{-}$$

$$\xrightarrow{\qquad} [Si(O-i-Pr)_{3}(OCHR^{1}R^{2})_{2}]^{-} \xrightarrow{\text{HCl}(2N)} 2R^{1}CH(OH)R^{2} \quad (1)$$

$$R^{1}COR^{2}$$

In conclusion, we have found that like fluoride and alkoxide ions [1,4], H^- coordinate with silicon, and gives potassium dihydridosilicates, $H_2Si(OR)_3^- K^+$. These pentavalent species react readily with Grignard reagents to give R_2SiH_2 , and show a high reactivity as reducing agents for carbonyl compounds. Investigation of special features of the reactions of these five-coordinate derivatives is now in progress.

References

- 1 St.N. Tandura, N.V. Alekseev and M.G. Voronkov, Top. Curr. Chem., 131 (1986) 99.
- 2 R. Damrauer and S.E. Danahey, Organometallics, 5 (1986) 1490.
- 3 For instance, R.R. Holmes, R.O. Day, J.J. Harland, A.C. Sau and J.M. Holmes, Organometallics, 3 (1984) 341; R.R. Holmes, R.O. Day, J.J. Harland and J.M. Holmes, ibid., 3 (1984) 347; J.J. Harland, J.S. Payne, R.O. Day and R.R. Holmes, Inorg. Chem., 26 (1987) 760.
- 4 For instance, (a) A. Boudin, G. Cerveau, C. Chuit, R. Corriu and C. Reye, Angew. Chem. Int. Ed. Engl., 25 (1986) 473; (b) P. Arya, J. Boyer, R. Corriu, G. Lanneau and M. Perrot, J. Organomet. Chem., 346 (1988) C11; (c) R. Corriu, G. Lanneau and M. Perrot, Tetrahedron Lett., 29 (1988) 1271; (d) R. Corriu, C. Guerin, B. Henner and W.W.C. Wong Chi Man, Organometallics, 7 (1988) 237; (e) M. Kira, K. Sato and H. Sakuraï, Chem. Lett., (1987) 2243; (f) M. Kira, K. Sato and H. Sakuraï, J. Org. Chem., 52 (1987) 948; (g) G. Cerveau, C. Chuit, R. Corriu and C. Reye, J. Organomet. Chem., 328 (1987) C17; A. Hosomi, S. Kohra, Y. Tominaga, J. Chem. Soc. Chem. Commun., (1987) 1517; M. Kira, K. Sato and H. Sakuraï, J. Am. Chem. Soc., 110 (1988) 4599.
- 5 R. Corriu, C. Guerin and J. Moreau, Top. Stereochem., 18 (1984) 158, and ref. therein.
- 6 J. Boyer, C. Breliere, R. Corriu, A. Kpoton, M. Poirier and G. Royo, J. Organomet. Chem., 311 (1986) C39; R. Corriu, 8 th Intern. Organosilicon Symposium, Ellis Horwood Ltd, Chichester, England, 1988; and ref. therein.
- 7 D.J. Hasdasz and R.R. Squires, J. Am. Chem. Soc., 108 (1986) 3139.
- 8 J.L. Brefort, R. Corriu, C. Guerin and B. Henner, J. Organomet. Chem., in press.
- 9 B. Becker, R. Corriu, C. Guerin and B. Henner, in press.
- 10 B. Becker, R. Corriu, C. Guerin and B. Henner, Q. Wang, J. Organomet. Chem., 359 (1989) C33.
- 11 W.H. Stevenson III, S. Wilson, J.C. Martin and W.B. Farnham, J. Am. Chem. Soc., 107 (1985) 6340.

C28

4.5