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Abstract 

Five-coordinate potassium dihydridosilicates, K+[HzSi(OR),]- (R = Et, i-Pr) 
have been obtained by reaction of a trialkoxysilane with potassium hydride. 
Reaction of the dihydridosilicate with an excess of a Grignard reagent gives the 
corresponding diorganosilane. The ease of reduction of carbonyl compounds by the 
dihydridosilicate in the absence of a catalyst is indicative of the high reactivity of 
the Si-H bond in such species. 

There is much interest in the existence [1,2], structures [3], reactivity [4], and 
isomerisations [2,5] of pentacoordinate silicon derivatives that have been proposed 
as intermediates in reactions of organosilanes in solution [5]. 

As a part of our investigation of the reactions of such hypervalent organosilicon 
species [6] we became interested in pentacoordinated silicon hydrides. These species 
have been observed in the gas phase from the reaction of H- with alkylsilanes 171, 
and suggested as intermediates in reactions in solution. For instance, the fast 
racemisation of the optically active 1-NpPhMeSiH(D) (1-Np = 1-naphthyl) cata- 
lysed by hydrides (KH, LiAlH,, LiAlD,) in THF or DME as solvent at room 
temperature has been rationalized in terms of coordination of H- (or D-) to 
silicon, leading to a five-coordinate dihydridosilyl anion [8]. Likewise the redistribu- 
tion reaction of di- and tri-hydrogenosilanes, RR’SiH, and RSiH, in the presence 
of hydrides (LiAlH,, KH and NaH) as catalysts [9] has been shown to involve such 
intermediates. However, whereas fluoride or alkoxide anions are well known to 
coordinate readily to a silicon atom to give stable derivatives [1,4], hydridosilicates 
resulting from the addition of H- at silicon have never been observed in solution. 

We have found that potassium hydride reacts with trialkoxy- or triaryloxy-silanes 
to yield the pentavalent ions, H,Si(OR),- or HSi(OR)4- depending on the reaction 
conditions, as summarized in Table 1. 

It can be seen that the ease of formation and the stability of the dihydridosilicate 
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Table 1 

HSi(OR), + KH z HSi(OR),- Kt +H,Si(OR),~- K+ 

(‘1 (2) ___. 
Run HSi(OR), reaction Products (R) ” 

(solvent) time (h) 
-__ __-- 
I (’ 2 li 

HSi(OEt), (THF) 
HSi(OEt), (THF) 
HSi(OEt), (DME) 

HSi(O-i-Pr), (THF) 
HSi(O-i-l?) (THF) 1 
HSi(OPh) (THF) 1 

” Relative ratio of 1 and 2 determined by “%i NMR. ’ Chemical yields of 1 or 2 obtained after removal 

of the solvent. 

2 depends greatly on the nature of the OR group attached at silicon and on that of 

the solvent (Table 1). Thus: 
(i) HSi(OPh), in THF readily gave HSi(OPh), _ IS’ (Table 1. run 6). Under the 

same conditions, the reaction of HSi(OEt), with KH in THF (Table 1, run 1) 
afforded a 60/40 mixture of HSi(OEt), K’ (1) [lo], and H,Si(OEt),~- K’ (2). 
HSi(OEt),-- was exclusively obtained when the reaction was carried on for 24 h 
(Table 1, run 2). In sharp contrast, HSi(O-i-Pr), gave only H,Si(O-i-P,), K” in 
94% yield (Table I, run 4), and even after 7 days at room temperature less than 5% 
of HSi(O-i-Pr),- K’ was detected. These results suggest the occurrence of a fast 
redistribution reaction of the dihydridosilicate 2 (R = Ph or Et). the rate of which is 
strongly lowered by steric effects (R = i-Pr). 

(ii) An increase in the solvating power of the solvent, on going to DME from 
THF, led to formation of HSi(OR), _ K+ (R = Et. Table 1, run 3). 

The dihydridosilicates 2 (R = Et and i-Pr) gave satisfactory NMR data. In 
particular, the 29Si NMR chemical shifts were in the usual range for anionic 
pentacoordinated silicates [4e-f,9,10]; as expected, upfield shifts of the “9Si NMR 
resonances relative to those of the corresponding alkoxysilanes were observed 
(Table 2). The ‘H-“Si coupling constants are also consistent with a five-coordinate 
structure [4e,lO,ll]. The value of the ‘H-29Si coupling constant is smaller for the 

five-coordinated silicates than for the corresponding neutral species (Table 2). as 
expected from the decrease in the proportion of s character in the Si--H bond. 

Table 2 

“Si NMR data “ for 2 (R = Et, i-Pr) (S = THF): a comparison with those of HSi(OR), and HSi(OR), 
_____ 

HSi(OEt), 6 ~-5X.X ppm (d. J’H-- “Si) 285 Hz 

HSi(OEt), 6 -XX.1 ppm [lo] (d, J(‘H-“Si) 223 Hz 

H2Si(OEt), 8 -80.6 ppm (t. J(‘H--‘%i) 21X Hz 

HSi(O-i-Pr), 8 -62.7 ppm (d, J(‘H--‘“Si) 285 Hr 

HSi(O-i-Pr), 6 -90.7 ppm [lO] (d, J(‘H- ‘“Si) 214 Hz 

H,Si(O-i-Pr),. 6 -86.9 ppm (t. J(‘H-‘“Si) 210 Hz 

; _ 
The spectra were recorded in THF as solvent with external C,D, as lock and TMS ah reference. 
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Table 3 
R’ MgX 

HSi(OR), a H,Si(OR),- Kf - 
THF 

+ R’*SiH, + R’$iH 

H,Si(OR),- K+ 

H,Si(OEt),- K+ 

H,Si(OiPr),- K+ 

R’MgX 

PhCH,MgCl 

n-BuMgBr 

PhMgBr 

PhMgBr 

PhCH,MgCl 

n-BuMgBr 

T(OC) t (h) 

-30-90 2 

-30-o 2 

-3o-+o 0.5 

r.t. 3 

40 2 

r.t. 2 

Products (W) a 

R’zSiH, R’$iH 

80 

60 10 

60 20 

77 10 

63 20 

50 15 

LI Yields of isolated products. 

As observed previously for o-arenediolato- [4a] and fluoroorgano-silicates [4d], 2 
(R = Et and i-Pr) reacts readily with a slight excess of a Grignard reagent RMgBr 
and R,SiH, was obtained in good yield (Table 3). Formation in high yields of the 
dihydrogenosilanes provides good chemical evidence for the nature of the dihy- 
dridosilicates 2, and for the presence of a high proportion of H,Si(OEt),- K+ in 
solution (see Table 3). The reaction took place readily under mild conditions in the 
case of H,Si(OEt),- K+ but a higher temperature was required to produce R,SiH, 
from H,Si(O-i-Pr),- K+. 

The isolated H,Si(O-i-Pr),- was also found to reduce carbonyl derivatives in the 
absence of a catalyst under mild conditions (Table 4). 

The yields of primary and secondary alcohols are generally high (50-80% yield). 
The lower yield in the case of PhCOCH, can be attributed to a partial enolisation of 
the ketone by alkoxide ions liberated during the reaction. Complex 2 is also able to 
give up both of the hydrogens bonded to silicon (Table 4, run l-4); this suggests 
that the reaction goes through a pentavalent hydridosilicate intermediate such as 
[HSi(OR),(OR’)]-, which can reduce a second molecule of the carbonyl derivative 

Table 4 
HCl(2N) 

H,Si(O-i-Pr)s- K+ + R’COR’ 3 - R’CHR’ 

(2) (3) ’ 
OH 

Run 3 3/2 ratio R!CH(OH)R* a (recovered R’COR*) 

(W 

1 PhCHO 

2 PhCOPh 

3 CH,(CH,),CHO 

4 PhCOCH s 

5 PhCOCH, 

2 74 

2 50 (26) 

2 62 

2 36 (40) 

1 80 (14) 

0 Yields of the isolated alcohols are based on the amount of carbonyl compound R’COR* introduced. As 

the ratio R’COR*/H,Si(O-i-Pr),- K+ is 2 (run l-4), and the yield is greater than 50% (except with 

PhCOCH, because of partial enolisation), the data show that H,Si(O-i-Pr),- transfers both of the 

hydrogens bonded to silicon. 
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DOI (eq. 1). 

H,Si(O-i-Pr)s-+ R’COR* -Ts [HSi(O-i-Pr)3(OCHR’R2)] 

-i--’ [Si(O-i-Pr)~(OCHR’R2)~] -Et!% 2R’CH(OH)R2 (I) 

R'CORL 

In conclusion, we have found that like fluoride and alkoxide ions [1.4], H-- 
coordinate with silicon. and gives potassium dihydridosilicates. H,Si(OR), _ K’. 
These pentavalent species react readily with Grignard reagents to give R,SiH,, and 
show a high reactivity as reducing agents for carbonyl compounds. Investigation of 
special features of the reactions of these five-coordinate derivatives is now in 
progress. 
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